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Introduction

Define the geometric Brownian motion

Calculate the terminal stock price using Monte-Carlo and
Quasi-Monte Carlo methods

Calculate the price of a call option for both of the methods

Calculate the delta of the call option by sensitivity analysis
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Geometric Brownian Motion

If a process generate some outcome which is time-depended but can not be
said ahead of time is known as a stochastic process.

Definition

A stochastic process {W (t) : 0 ≤ t ≤ T} is a standard Brownian motion on
[0,T ] if

1 W (0) = 0

2 It has independent increments. That is, for any t1, t2, . . . , tn,
W (t2)−W (t1),W (t3)−W (t4) . . . ,W (tn)−W (tn−) are independent
random variables.

3 For every 0 ≤ s < t ≤ T ,W (t)−W (s) ∼ N(0, t − s)

Definition

A stochastic process {X (t) : 0 < t < T} is said to be a general Brownian

motion with a drift parameter µ and diffusion coefficient σ2 if X (t)−µt
σ

is a

standard Brownian motion, written as X (t) ∼ BM(µ, σ2). The general
Brownian motion still follow first two properties of the standard Brownian
motion. However, the third property is modified as
X (t)− X (s) ∼ N(µ(t − s), σ2(t − s)) for any 0 ≤ s < t < T
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Geometric Brownian Motion cont

If a stochastic process Xt ∼ BM(µ, σ2) where µ is the drift
and σ2 diffusion parameter, then Xt satisfies

dX (t) = µt + σdW (t) (1)

where, W (t) is the standard Brownian motion or Wiener
process.

Define X (t) = log S(t) then

dS(t) = µS(t)dt + σS(t)dW (t) (2)

is the SDE for the stock price random process.

For a given time t > 0, the solution of equation (2)

S(t) = S(0) + µ

∫ t

0
S(r)dr + σ

∫ t

0
S(r)dW (r) (3)
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Stochastic Model: Geometric Brownian Motion cont.

A more explicit formula can be derived using Ito’s formula for
the function F (log S(t), t)

dF =
[
∂F
∂t + µ ∂F

∂S(t) + 1
2σ

2 ∂2F
∂2S(t)

]
dt +

(
σ ∂F
∂S(t)

)
dW (t)

After simplification we obtain

d log S(t) =
1

S(t)
dS(t) +

1

2

−1

S2(t)
(dS(t))2

= µdt + σdW (t) +
1

2

−1

S2(t)
(µS(t)dt + σS(t)dW (t))2

= (µ− 1

2
σ2)dt + σdW (t)

For any time t > 0 the differential can be written as

S(t) = S(0)e(µ−
1
2
σ2)t+σW (t) (4)
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GBM(µ, σ2) Simulation

For a given time set t0 = 0 < t1 < t2 < . . . < tn the stock price
S(t) at time t0, t1, . . . , tn can be generated by

S(ti+1) = S(ti )e
(µ− 1

2
σ2)(ti+1−ti )+σ

√
(ti+1−ti )Zi+1 (5)

where Z1,Z2, . . .Zn are independent and identically distributed
standard normals and i = 0, (n − 1).
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Sensitivity Analysis: Pathwise Derivative Method

The payoff from a European call option is defined as

Y = e−rT (ST − K )+ (6)

In pathwise derivative method we use the chain rule to compute

dY

dS0
=

dY

dST

dST
dS0

= e−rT1[ST>K ]
ST
S0

(7)

That is, Delta: ∆ = e−rT1[ST>K ]
ST
S0

To estimate the delta, we generate N values for ST ; say
S1,S2, . . . ,SN and compute

∆ =
1

N

N∑
i=1

e−rT1[S i>K ]
S i

S0
(8)
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Monte-Carlo Method

For example, let say the current stock price, S0 = $100.00, Strike
Price, K = $100.00, interest rate, r = 5%, volatility, σ = 30%, and
time interval T = 1.

In Monte-Carlo Method we generate sufficiently large number of
the end price, ST and take the mean of those prices. In our
example, we generate 10,000 price paths.
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Price Paths

Figure: Price Paths
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MC:Option Price and Sensitivity Analysis

Using the call option payoff equation (6),

Y = e−rT (ST − K )+

and delta calculation equation (8),

∆ =
1

N

N∑
i=1

e−rT1[S i>K ]
S i

S0

we obtain

MC Option Price=$14.05

MC Option Delta=0.6252
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Quasi-Monte Carlo Method

We take the same example, current stock price, S0 = $100.00,
Strike Price, K = $100.00, interest rate, r = 5%, volatility,
σ = 30%, and time interval T = 1.

In Quasi-Monte Carlo Method we use low discrepancy
sequence, in this case, Halton sequence to generate 10,000
price paths for the 1 time period.

The price paths look almost same what we have seen in MC
method.
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QMC: Option Price and Sensitivity Analysis

Using the call option payoff equation (6),

Y = e−rT (ST − K )+

and delta calculation equation (8),

∆ =
1

N

N∑
i=1

e−rT1[S i>K ]
S i

S0

we obtain

QMC Option Price=$14.39

QMC Option Delta=0.6280



Introduction Geometric Brownian Motion Sensitivity Analysis Monte-Carlo Method Quasi-Monte Carlo Method Results

Results

Option Price Delta

Black Scholes $14.23 0.6243
Monte Carlo $14.05 0.6252

Quasi-Monte Carlo $14.39 0.6280

Table: Method comparison
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